Tag Archive: Russia


Some years ago I mentioned Pleistocene Park, a project in Siberia attempting to recreate what scientists call the Mammoth Steppe, to reduce combat global climate change. Please join me in making a donation, even two dollars can help. More information about Pleistocene Park and how to donate is available here.

yakut horses at pleistocene park in siberia

Yakutian Horses at Pleistocene Park

Advertisements

I’m always trying to get better at what I do. It takes tome to learn new tricks and techniques and improve old ones. This rendition of a Russian AN-2 in flight somewhere over Siberia in the 1950s is much better than the one I did a few years ago. This is sort of a doodle for a couple of other images I want to do which will include an AN-2 or two. The AN-2 was built by the Antonov Design Bureau which is still in existence in the Ukraine.

an_2_wip

As the AN-2 is a biplane, making it more complicated to portray than single-wing aircraft, I first tried out a few things I learned to do on something simpler. Two Dassault Super Mystère B2 fighter bombers from the Israeli Air Force (IAF) 105 Squadron (Scorpion) in flight over a mountainous desert landscape; circa 1967.

two_mysteres_mod

The Super Mystère was the result of progressive improvements in earlier Dassault aircraft which were also flown by the IAF. The Super Mystère went into production in 1957. Israel acquired its first aircraft of this type a year later. They saw service in both the 1967 Six Day War and in 1973 during the Yom Kippur War. It was the first aircraft flown by the IAF which could attain supersonic speeds in level flight. IAF pilots liked the aircraft feeling it was a good match for the MiG-19.

The image of the Super Mystères is available on various products at one of my Zazzle stores. The AN-2 should appear there at some time in the near future.

mr. molotov's pale ale

Mr. Molotov’s Pale Ale

A bit of dark humor this time – a label from a bottle of Mr. Molotov’s Pale Ale brewed by mythical High Octane Brewing Company.

Mr. Molotov’s Pale Ale[/caption]Vyacheslav Mikhailovich Molotov was Soviet Minister of Foreign Affairs under Josef Stalin. Along with text reading “Mr. MOLOTOV’S Pale Ale” and “OCTANE RATING: 93.” Additional includes health warnings and the name of the brewery. Customizable text reading “Toss ‘Em A Molly” also appears. I often refer to Molotov cocktails as Mr. Molotov’s Pale Ale.

The Molotov Cocktail (Russian: Коктейль Молотова) is an improvised incendiary device, usually a gasoline-filled bottle. As they are extremely easy to make they are often used in riots, by street gangs, and by guerrilla fighters. The idea is to set the target ablaze, as opposed to blowing it up with explosives.

While most probably first used during the Spanish civil war in the 1930’s, the term “Molotov Cocktail” was coined by the Finns, as a jibe against Molotov, during the Winter War (1939-40) following a Russian invasion. Molotov claimed on Soviet radio that the bombs the Russians were dropping on Finland were actually humanitarian food deliveries for the starving Finns. The FInns referred to Soviet cluster bombs as “Molotov bread baskets.” Later, the Finns called gasoline incendiary devices used against Soviet tanks “Molotov cocktails,” a beverage to accompany the bread. Minister Molotov did not much care for the term.

Light up the party; toss ’em a Molly. Please do not try this at home or on the street. Leave it to the professional radical; especially as most people make a critical mistake when constructing Molotov cocktails and are more likely to immolate themselves than their intended target.

I enjoyed making this project as it required thinking about both artistic and technical elements. Making the label itself was quite fun, and then so was rendering a 3D bottle with the label image correctly sized and oriented in DAZ Bryce. I think I was fairly successful in giving the label the look of second-rate, poor quality which was typical of many items printed in the Soviet Union.

As usual the image is available on a growing list of items at one of my Zazzle stores. Search for “molotov.”

mr. molotov's pale ale label

A Molly Label

a flaming bottle of mr. molotov's pale ale

Don’t Try This At Home

There are some people in Alaska who would like for the state to become an independent nation. And there are a few who seem to think Alaska is already independent. So, I have another entry in the series of postage stamps for an independent Alaska. This time a 10-Nugget featuring a bull Caribou superimposed on a Caribou pelt.

10-nugget alaska caribou postage stamp

10-Nuggest Alaska Postage Stamp

While Caribou (Rangifer tarandus), known as the reindeer outside of North America, are widespread and numerous, some subspecies are rare and one has gone extinct. The Inuit word tuktu means – deer that never stops moving. Caribou are always on the move, going north to calve, heading for the winter grounds, and south in the summer. Caribou considerably in colour and size. Uniquely among deer, both genders grow antlers, though these are larger in the males and there are a few populations where females lack them completely.

Caribou hunting and herding of semi-domesticated reindeer (for meat, hides, antlers, milk and transportation) are important to several Arctic and Subarctic peoples. Even far outside its range, the caribou/reindeer is well known due to the myth, probably originating in early 19th century America, in which Santa Claus’s sleigh is pulled by flying reindeer. In Lapland (aka Samiland) reindeer pull a pulks, a type of sled or sleigh.

Caribou are present in both tundra and taiga (boreal forest) areas. It was originally was found in Scandinavia, eastern Europe, Russia, Mongolia, and northern China north of the 50th latitude. In North America, it was found in Canada, Alaska, and the northern conterminous USA from Washington to Maine. In the 19th century, it was apparently still present in southern Idaho. It also occurred naturally on Sakhalin, Greenland, and probably even in historical times in Ireland.

During the late Pleistocene era, reindeer were found as far south as Nevada and Tennessee in North America and Spain in Europe. Domesticated reindeer are mostly found in northern Fennoscandia and Russia, with a herd of approximately 150-170 reindeer living around the Cairngorms region in Scotland. The last remaining wild tundra reindeer in Europe are found in portions of southern Norway. A few reindeer from Norway were introduced to the South Atlantic island of South Georgia in the beginning of the 20th century. Today, there are two distinct herds still thriving there, permanently separated by glaciers. Their total numbers are no more than a few thousand. The flag and the coat of arms of the territory contain an image of a reindeer. Around 4000 reindeer have been introduced into the French sub-Antarctic archipelago of Kerguelen Islands. East Iceland has a small herd of about 2500–3000 animals.

Caribou and reindeer numbers have fluctuated historically, but many herds are in decline across their range. This global decline is linked to climate change for northern, migratory caribou and reindeer herds and industrial disturbance of caribou habitat for sedentary, non-migratory herds.

Fur Fur color varies considerably, both individually, and depending on season and subspecies. Northern populations, which usually are relatively small, are whiter, while southern populations, which typically are relatively large, are darker. This can be seen well in North America, where the northermost subspecies, the Peary Caribou, is the whitest and smallest subspecies of the continent, while the southermost subspecies, the Woodland Caribou, is the darkest and largest.

The coat has two layers of fur, a dense woolly undercoat and longer-haired overcoat consisting of hollow, air-filled hairs.

In most populations both sexes grow antlers, which (in the Scandinavian variety) for old males fall off in December, for young males in the early spring, and for females in the summer. The antlers typically have two separate groups of points, a lower and upper.

Caribou have the largest antlers relative to body size among deer, but the antlers of the domesticated reindeer antlers tend to be rather small and spindly.

Caribou are primarily dependent on lichens for food during the winter, especially reindeer moss. They also consume the leaves of willows and birches, as well as sedges and grasses. There is some evidence to suggest that on occasion, they will also feed on lemmings, arctic char, and bird eggs. Reindeer herded by the Chukchis have been known to eat mushrooms.

Some populations of North American caribou the longest migration route of any terrestrial mammal, traveling up to 3,100 mi (5,000 km) a year, and covering 390,000 sq mi 1,000,000 km2 (1,000,000 km2).

There are a variety of predators that prey heavily on reindeer. Golden Eagles prey on calves and are the most prolific hunter on calving grounds. Wolverine will take newborn calves or birthing cows, as well as (less commonly) infirm adults. Brown Bear and, occasionally, Polar Bear prey on reindeer of all ages but (as with the wolverine) are most likely to attack weaker animals such as calves and sick deer. The Gray Wolf is the most effective natural predator of adult reindeer, especially during the winter.

Blood-sucking insects, such as black flies and mosquitoes, are a plague to reindeer during the summer and can cause enough stress to inhibit feeding and calving behaviors.

Caribou and Reindeer have long been hunted by humans since the Mesolithic and Neolithic periods, and are today the main predator in many areas. Norway and Greenland have unbroken traditions of hunting wild reindeer from the ice age until the present day. In the non-forested mountains of central Norway it is still possible to find remains of stone-built trapping pits, guiding fences, and bow rests, built especially for hunting reindeer.

Caribou are still hunted in North America and Greenland. In the traditional lifestyle of the Inuit people, Northern First Nations people, Alaska Natives, and the Kalaallit of Greenland, the caribou is an important source of food, clothing, shelter, and tools. Many Gwichʼin people, who depend on the Porcupine caribou, still follow traditional caribou management practices that include a prohibition against selling caribou meat and limits on the number of caribou to be taken per hunting trip.

A faux propaganda image featuring a rural scene from the early post-war Soviet Union. Depicts a GAZ M-20 Pobeda automobile, in front of a dacha (rural summer house). Across the upper part of the image is an “M20” hood ornament, Cyrillic (Russian) text reading “ГАЗ” (GAZ) and a side ornament found on the vehicles featuring stylized Cyrillic text reading “Победа” (Pobeda). The image has been “aged” to suggest that it dates from the early post-war period.

Internal Soviet propaganda often tried to inform the people how good life was in the USSR. A dacha and a car to get there signified the good life. City dwellers dreamed of having a small plot of land outside the city to flee to on summer weekends, away from the heat and dirt of the city.

Click on image for full-size view.

russian gaz pobeda and dacha

GAZ M20 Pobeda parked near a dacha

The Pobeda, was the first automobile manufactured for the public after the end of World War. The M20 was produced 1946 to 1958. GAZ (ГАЗ is a Russian acronym for Gorkovsky Avtomobilny Zavod – Gorsky Automobile Factory) Pobeda (Победа) is the Russian word for victory. The name was chosen because the car was first tested in 1943 when an Allied victory in World War II began to appear likely.The Pobeda was manufactured under license in Poland and a few were assembled in North Korea. The Pobeda was the first post-war Soviet-made automobile and the first Soviet vehicle to have turn signals, two electric wipers, an electric heater, and a built-in AM radio. The car came to be a symbol of postwar Soviet life and is today a popular collector’s item. A total of 235,997 Pobedas were produced. A number of M20s have been extensively customized in recent years. There are even a few “muscle car” versions on the road.

The word “dacha” originated in the 17th century from the verb “davat’” (to give), in reference to plots of land distributed by the Tsar. At the beginning of the 18th century during the reign of Peter the Great dachas became popular as summer holiday retreats. The nobility used their dachas for social and cultural gatherings, including masquerade balls and fireworks displays.

By the end of the 19th century, a house in the country was one of the necessary possessions of the rich as well as the middle class. Russian poets and playwrights (including Alexander Pushkin and Anton Chekhov) mentioned dachas in their works. Summer homes in beautifully adorned areas became a “place-to-be” for many Russian artists. Many types of goods were specially manufactured for dacha use – from lady’s accessories such as fans and hat to furniture items and even toilets.
After the 1917 Russian Revolution some dachas became “holiday homes” for workers.

Dachas became very popular after the end of World War. For some it was not just a weekend getaway. A dacha with a small plot of land let people save their tiny incomes. Here they could plant their own vegetables. They stored potatoes in cellars, pickled cucumbers and made jams out of apples and pears in order to have some food reserves to last through the cold Russian winter. Some people grew fruits and vegetables not only for their own consumption, but to sell as well.

In many areas the plots of land for dachas were limited to 0.06 hectares (about .15 acres). A plot of that size was too small for most people to live on permanently; authorities needed to keep workers in the big cities and were not interested in the restoration of private farming on a wider scale. The concession of the “zero point zero six of a hectare” was necessary because the country could not provide its people with enough food. As a result many dacha settlements sprang up with small houses standing right next to each another.

There were legal size restrictions for dacha houses. They had to have not more than 25 m² (269 square feet) of living area and be only one storey tall. That’s why they usually had a Mansard roof with a small second storey room, which was considered by authorities as just a big garret or attic, not a second storey. Dachas built since the dissolution of the Soviet Union tend to be rather larger.

A typical plot of land was surrounded by berry trees and shrubs. There was a small house (in many cases – with no conveniences at all) and a hut for storing garden tools. Around the house there were rows of plants and vegetables. In the areas around Moscow potatoes, tomatoes, and cucumbers were the main crops. However, the owners’ fantasies about what to plant knew no boundaries. A row of strawberries became “a must” for many (strawberries usually ripen faster than everything else). In the south beans and even melons were grown, while in Siberia many dacha lovers liked to plant sakura (Japanese cherries). At the beginning of the 1960s the number of fruit trees that could be planted was heavily regulated by the rules of the dacha settlement. The aim of this measure was to make the area visually pleasing. Later all these quotas were lifted. The same was true for the size of the plot – if you wanted a bigger plot you could simply buy your neighbor’s land or find another plot somewhere else.

In the 1980s, due to the shortage of goods in stores, farming at dachas became a massive phenomenon. For some it was more necessity then pleasure, as modern farming tools were not readily available. But others took their dacha trials as a hobby. They took pride in inventing something unique for their flowers and vegetables, such as greenhouses or unique water-spraying devices. Still others tried to think of ways to fertilize the ground not just with manure, but other additives. Many unnecessary items from city apartments could easily be turned into useful gadgets for the dacha. For example, if you had too many empty cola bottles you could cut them in half and use the bottom part to protect young plants from cold spring nights.

The harvest was a special pride for many people – some sold their produce, while others gave it away to their neighbors and friends. It was common to share the seeds of rare plants with others. Real fans think about their dacha all year long. In winter they plant tomato, cucumber, pepper and eggplant seeds in small pots that they keep on the window sills of their apartments – and at the beginning of May they re-plant them at their dachas.
Many dacha lovers chose to live on their plots of land. They built good houses with all the necessary facilities, including heating and electrical systems. Having a banya (a small bath house) at your dacha is not a luxury any more. At the beginning of 1990s some Russian “nouveau riches” made “fortresses” out of their dachas. A few even bred exotic animals – like iguanas and crocodiles.

It is said that the dacha is a way of “returning to paradise lost” – a source of temporary harmony away from the hustle and bustle of the big city.

The Cruiser Aurora

A digital image of the Tsarist-era Russian Navy cruiser Aurora (Russian: Аврoра) which served as an iconic symbol of the October 1917 Bolshevik Revolution, moored in the Neva River at St. Petersburg, Russia.

Click on image for full-size view.

Russian Navy cruiser Aurora

The Aurora

The Aurora’s keel was laid down at the “New Admiralty” shipyard in St.Petersburg on 23 May 1897. She was one of three Pallarda-class cruisers, built for service in the Pacific Far East. All three ships of this class served during the Russo-Japanese War. The cruiser was launched on 11 May 1900 and joined the Navy of Russia in July 1903. The ship measures 126.8 meters (418 feet 5 inches) in length, 16.8 meters (55 feet 5 inches) in width and weighs a staggering 7,600 tons. Maintaining a speed of 20 knots (23.3 miles per hour) it can travel independently for up to 1,440 sea miles.

Soon after entering service, in November 1903, Aurora was ordered to sail with a group of reinforcements to the Russian Pacific Fleet. However, she suffered from repeated mechanical failures and had to be repaired at several ports along the way. When word was received of the start of the Russo-Japanese War while at Djibouti, she was detached from the reinforcement fleet and sent back to the Baltic. After refitting, Aurora was ordered back to Asia as part of the Russian 2nd Pacific Squadron, a collection formed from the Russian Baltic Fleet, under the command of Vice-Admiral Zinovy Rozhestvenski. On the way to the Far East, Aurora was involved in the Dogger Bank incident when Russian vessels mistook British trawlers for Japanese warships in the North Sea and fired on them. Russian vessels also fired on each other. The Aurora sustained slight damage during this incident and her captain was killed. The crew used part of the Aurora’s penetrated armor to frame Captain Yegoryev’s photograph.

On 27 and 28 May (May 14–15 in the Julian calendar then in used by Russia) 1905, Aurora took part in the Battle of Tsushima Strait (between Korea and southern Japan), along with the rest of the Russian squadron. During the battle, her captain, Captain 1st rank Eugene R. Yegoryev was killed, along with 14 crewmen. The executive officer, Captain 2nd rank Arkadiy Konstantinovich Nebolsine, though wounded himself took command. After that Aurora, covering other, much slower Russian vessels, became the flagship of Rear-Admiral Oskar Enkvist, and with two other Russian cruisers broke through to neutral Manila, where she was interned by American authorities from June 6, 1905 until the end of the war.

In 1906, Aurora returned to the Baltic to become a cadet training ship. From 1906 until 1912 the cruiser visited many foreign ports; in November 1911 the ship was in Bangkok as part of the celebrations in honoring the newly-crowned King of Siam.

During World War I Aurora operated in the Baltic Sea performing patrols and shore bombardment tasks. In 1915, her armament was changed to fourteen 152 mm (6 in) guns. At the end of 1916, she was moved to Petrograd (renamed St. Petersburg) for major overhaul. The city was brimming with revolutionary ferment and part of her crew joined the 1917 February Revolution. A revolutionary committee was created on the ship, with Aleksandr Belyshev elected as captain. Most of the crew joined the Bolsheviks, who were preparing for a Communist revolution.

At 9.45 p.m on 25 October 1917 (Old Style – Julian calendar) a blank shot from her forecastle gun signaled the start of the assault on the Winter Palace (then the residence of the Provisional Government), signaling the beginning of the October Revolution. In summer 1918, she was relocated to Kronstadt and placed into reserve.
In 1922, Aurora was brought to service again as a training vessel. Assigned to the Baltic Fleet, from 1923, she repeatedly visited the Baltic Sea countries, including Norway in 1924, 1925, 1928 and 1930, Germany in 1929 and Sweden in 1925 and 1928. Until 1940 students of Naval colleges did practical work on the cruiser. The Aurora again visited several foreign ports. In 1924 the cruiser was awarded the Red Banner of the USSR Central Committee and in 1927 decorated with the order of Red Banner.

During the Second World War, the guns were taken from the ship and used in the land defense of Leningrad. During the siege (1941-44) the Aurora was moored at a pier in the Oranienbaum port (the town of Lomonosov) . Constantly shelled and bombed the hull was holed, and Aurora on September 30, 1941. In July 1944 the ship was raised and taken into a dock for repair. The ship herself was docked at Oranienbaum, and was repeatedly shelled and bombed.

In 1948 the Aurora was moored at the Petrogradskaya embankment of Leningrad and served as a training vessel until 1956 when she became a museum (a branch of the Central Naval Museum). Over the years since the Aurora been visited by more than 28 million people from 160 countries. In 1968 the Aurora was decorated with the Order of the October Revolution. In July 1992 the Saint Andrew Naval Banner – the symbol of Russian naval power – was raised over the ship again.

Aurora stands today as the oldest commissioned ship of the Russian Navy, still flying the naval ensign under which she was commissioned, but now under the care of the Central Naval Museum. She is still manned by an active service crew commanded by a Captain of the 1st Rank. The Aurora is now maintained by cadets from the nearby Nakhimov Navy School

In January, 2013, Russian Defence Minister Sergei Shoygu announced plans to recommission Aurora and make it the symbol of the Russian Navy due to its historical and cultural importance.

Moroz

A dark night in Siberia – bringing in a bit of wood for the fire, conifer needles are covered in frost. Moroz (мороз) is the Russian word for frost.

Click on image for full-size view.

frost siberian night

Mороз

Matanuska Moose Milk

An old sign from world famous and entirely mythical Matanuska Moose Milk dairy farm in Willow Alaska; not too far from Anchorage. In the image a milkmaid can be seen hand milking Matilda the farm’s first dairy moose.

Click on image for full-size view.

matanuska moose milk dairy farm sign

Matanuska Moose Milk Dairy

This is North America’s first and only moose dairy. When they make Moose Tracks ice cream, it’s the real thing; and the moosarella cheese makes great pizza.

matanuska moose milk plastic jug label

The label seen on the dairy’s plastic milk jugs

Believe it or not there are moose dairies; a small number in Russia and one in Sweden.

Moose milk is commercially farmed in Russia. The milk is high in butterfat (10%) and solids (21.5%), according to data collected on Russian moose; research into American moose milk is in a less advanced state than in Russia, but appears to indicate that American moose have even higher concentrations of solids in their milk. Moose milk is said to be a bit salty and bitter; with a hint of pine or spruce needles.

A farm-born moose calf is taken from its mother within 2–3 hours after birth and is raised by people. It is first bottle-fed pure moose milk for about a week, but then it is diluted and gradually replaced with a milk substitute. The calves imprint and become attached to humans.

moose milk carton

Also available in cartons

The Russians say moose soon recognize the milkmaids as their substitute as her substitute calves. Milkmaids spread amniotic fluid on their hands to further this process. Having become accustomed to humans the animals are released to the forest; but visit the farm every day to be milked during the lactation period (typically, until September or October).

Some animals become more attached to the farm than do others. The Russians hope that after several generations they will see the development of domesticated moose. This effort is hampered by the fact that in the free-range conditions farm moose cows often mate with wild bulls.

During winter the animals roam free throughout the surrounding forest. They usually do not stray too far, but spend much of their time at nearby woodlots where trees are being cut, feeding on the by-products of timber operations. And they know the farm as the place for a daily rations of oatmeal, and as a safe place to give birth to their young.

One Russian sanitorium serves moose milk to residents in the belief that it helps them recover from disease or manage chronic illness more effectively. Some Russian researchers have recommended that moose milk could be used for the prevention of gastro-enterological diseases in children.

Kostroma Moose Farm began operations in 1963 under the aegis of Kostroma Oblast Agricultural Research Station which established a moose husbandry laboratory coordinate research conducted at the farm, both by Kostroma zoologists and scientists from Moscow and elsewhere. Kostroma lies at the confluence of the Volga and Kostroma rivers; approximately 200 miles northwest of Moscow.

In addition to milk the Kostroma farm engages in the harvest of antler velvet. A bull moose grows a new pair of antlers every summer. Similar to the deer and reindeer (caribou) farms in New Zealand and Siberia, moose antlers can be harvested while they are still soft and covered with velvet, which is used for the manufacture of certain pharmaceutical products.

Tourists may also visit the farm. Though access to the farm is strictly controlled to protect the animals from disease. Visit to the facility can be arranged through the Kostroma Tourism Bureau.

Two other Russian farms, intending to raise moose for meat failed after a short time. Meat sales did not cover the costs of production which can be as much as ten times higher than for beef. And moose are not stupid. They soon stop returning to a place of slaughter.

The Elk (Moose are called Elk in Europe) House (Älgens Hus) farm in Bjurholm, Sweden is believed to be the world’s only producer of moose cheese. The cheese sells for about 500 dollars per pound. Algens Hus’ restaurant offers moose-cheese dishes. Cheese plain with bread or biscuits, or better yet, frozen moose mousse. Best served with raspberries.

drink moose milk

Drink Moose Milk!

Fireweed

Fireweed – Epilobium augistifolium

The species name angustifolium is a portmanteau of the Latin words angusti meaning ‘narrow’, and folium meaning ‘leaf’. It shares this name with other species of plant including Vaccinium angustifolium.

In mid to late summer Fireweed begins blooming in the middle of the stalk, with each successive flower blooming just above the one before it. When the last flowers bloom, at the top of the stalk, it is considered a sign that summer, or tourist season, has ended. At that time the earliest blooms seed and turn to cotton. When the fireweed turns to cotton, Alaskans say there are about six weeks until winter begins.

Epilobium agustifolium

Epilobium agustifolium

Fireweed is often seen in open fields, pastures, and particularly burned-over lands; the common name Fireweed derives from the species’ abundance as a coloniser on burnt sites after forest fires. As a pioneer species it quickly colonizes open areas with little competition, makes it a clear example of a pioneer species. Plants grow and flower as long as there is open space and plenty of light, as trees and brush grow larger the plants die out, but the seeds remain viable in the soil seed bank for many years, when a new fire or other disturbance occurs that opens up the ground to light again the seeds germinate. Some areas with heavy seed counts in the soil, after burning, can be covered with pure dense stands of this species and when in flower the landscape is turned into fields of color.

In Britain the plant was considered a rare species in the 18th century; confined to a few locations with damp, gravelly soils. The plant’s rise from local rarity to widespread weed seems to have occurred at the same time as the expansion of the railway network, and the associated soil disturbance. The plant became locally known as bombweed due to its rapid colonization of bomb craters in the second world war.

Reddish stems are usually simple, erect, smooth, 1½–8 feet high with scattered alternate leaves.

Reddish-brown seed capsules bear many minute brown seeds, about 300 to 400 per capsule and 80,000 per plant. The seeds have silky hairs to aid wind dispersal and are very easily spread by the wind, often becoming a weed and a dominant species on disturbed ground. Once established, the plants also spread extensively by underground roots, an individual plant eventually forming a large patch.

The leaves of Fireweed are unique in that the leaf veins are circular and do not terminate on the edges of the leaf, but form circular loops and join together inside the outer leaf margins. This feature makes the plants very easy to identify in all stages of growth. When Fireweed first emerges in early spring, it can closely resemble several highly toxic members of the lily family, however, it is easily identified by its unique leaf vein structure.

The young shoots were often collected in the spring by Native American people and mixed with other greens. As the plant matures the leaves become tough and somewhat bitter. The southeast Native Americans use the stems in the stage. They are peeled and eaten raw. When properly prepared soon after picking they are a good source of vitamin C and pro-vitamin A. The Dena’ina add fireweed to their dogs’ food. Fireweed is also a medicine of the Upper Inlet Dena’ina, who treat pus-filled boils or cuts by placing a piece of the raw stem on the afflicted area. This is said to draw the pus out of the cut or boil and prevents a cut with pus in it from healing over too quickly.

The root can be roasted after scraping off the outside, but often tastes bitter. To mitigate this, the root is collected before the plant flowers and the brown thread in the middle removed.

In Alaska, candies, syrups, jellies, and even ice cream are made from fireweed. Monofloral honey made primarily from fireweed nectar has a distinctive, spiced flavor.

In Russia, its leaves were often used as tea substitute and were even exported, known in Western Europe as Kapor tea. Fireweed leaves can undergo fermentation, much like real tea. Today, Kapor tea is still occasionally consumed though not commercially important.

I do not know if you have ever heard the term “roaring silence.” Roaring silence is encountered only when it is extremely quiet; no cars, no airplanes, none of the typical man made sounds. You can hear the stillness and it is quite loud. It’s the sound of the planet, or the universe. I am not sure what causes it. It is becoming ever harder to experience.

The wolverine is one of those species which inhabit the roaring silence; they require large quiet spaces to survive. More about the animal after the newspaper article.

Click on image for full-size view.

A wolverine,Gulo gulo, in the wilderness

Wolverine

http://www.nytimes.com/2012/03/18/magazine/is-silence-going-extinct.html?_r=1&ref=global-home

Is Silence Going Extinct?

Peter van Agtmael/Magnum, for The New York Times

Davyd Betchkal, sound catcher, in Denali National Park and Preserve in Alaska.

From the New York Times; March 15, 2012


Davyd Betchkal, sound catcher, in Denali National Park and Preserve in Alaska.

By KIM TINGLEY
March 15, 2012

Setting off in the predawn gloaming of central Alaska, we were the sounds of swishing snow pants, crunching boots and cold puffs of breath. As sunrise gradually lightened the late November sky, we took visible shape: a single-file parade on a narrow white trail traveling west, deeper into Denali National Park and Preserve. It was three degrees and so still that when we pulled up to rest, I heard no wind, no sibilant leaves, just a barely perceptible ringing in my ears. Tundra swans, kestrels and warblers had all flown south. Grizzlies were asleep in their dens. We tramped over frozen streams and paused to discover water still trickling faintly in hollows below. To the north, a morning blast of pink and orange brightened snow-shrouded Mount Healy at the edge of the Alaska Range; to the south — where the sun is always rising or setting during winter at a latitude just three degrees shy of the Arctic Circle — an alpine ridge remained covered in shadow and alder.

We saw a beaver hut on a frozen pond and moose tracks in snow. Ice frosted the nettles of black spruce and the beard of our leader, Davyd Betchkal, the park’s physical-science technician. Betchkal’s beard recalled that of his hero, the naturalist Henry David Thoreau, at the start of the Civil War. Otherwise he was a 25-year-old Wisconsinite wearing a lime green hat knit by his mother. He and I shouldered backpacks each weighted with 30 pounds of recording equipment. Far up ahead, a park ranger on skis towed more gear by sled.

Our destination was a ridge above Hines Creek, where Betchkal planned to assemble a station to collect a month’s worth of continuous acoustic data documenting an intangible, invisible and — increasingly — endangered resource: natural sound. Our mission was not only to trap the ephemeral but also to experience it ourselves, which at the moment was impossible for three reasons: 1) the chafing of our nylon outfits; 2) the chunking of our military-issue Bunny Boots on ice; and 3) planes.

“If you’re on foot and you choose to focus on the natural quality of the landscape, you’re completely immersed in nature; nothing else exists,” Betchkal said to the back of my head, letting me set the pace as we traipsed steadily uphill. “Then a jet will go over, and it kind of breaks that flow of consciousness, that ecstatic moment.” Meditating on our surroundings, I became a little curious how much farther we had to go. “Don’t think about that — that’s my answer,” Betchkal called ahead cheerfully. “Another answer is that I don’t know.”

An undeveloped swath of land nearly the size of Vermont, Denali should be a haven for natural sound. Enormous stretches of wild country abut the park in every direction save east, where Route 3 connects Fairbanks to Anchorage. One dead end and mostly unpaved road penetrates the park itself. Yet since 2006, when scientists at Denali began a decade-long effort to collect a month’s worth of acoustic data from more than 60 sites across the park — including a 14,000-foot-high spot on Mount McKinley — Betchkal and his colleagues have recorded only 36 complete days in which the sounds of an internal combustion engine of some sort were absent. Planes are the most common source. Once, in the course of 24 hours, a single recording station captured the buzzing of 78 low-altitude props — the kind used for sightseeing tours; other areas have logged daily averages as high as one sky- or street-traffic sound every 17 minutes. The loudest stretch of the year is summer, when hundreds of thousands of tourists flock to Denali, embarking on helicopter or fixed-wing rides. Snowmobiles are popular with locals, and noise from the highway, the park road and daily passenger trains can travel for miles. That sort of human din, studies are beginning to suggest, is imperiling habitat — in Denali as well as wilderness areas around the world — as surely as a bulldozer or oil spill. But scientists have so little information about what landscapes should sound like without human interference that trying to correct the problem would be like a surgeon’s wielding a scalpel without knowing the parts of the body, let alone his patient’s symptoms. To restore ecosystems to acoustic health, researchers must determine, to the last raindrop, what compositions nature would play without us.

For more than 40 years, scientists have used radio telescopes to probe starry regions trillions of miles away for sounds of alien life. But only in the past five years or so have they been able to reliably record monthslong stretches of audio in the wildernesses of Earth. Last March, a group of ecologists and engineers taking advantage of advances in collecting, storing and analyzing vast quantities of digital data declared a new field of science: soundscape ecology. Other disciplines have long observed how various sounds affect people and individual animal species, but no one, they argued in the journal Bioscience, has yet studied the interconnected sounds of whole ecosystems. Soundscapes — composed of biological utterances like birdcalls, geophysical commotions like wind and running water and anthropogenic noises like motors — are “an acoustic reflection of the patterns and processes of the landscape,” the paper’s lead author, Bryan Pijanowski, an ecologist at Purdue University, told me. “And if we can take sound samples and develop appropriate metrics, we might be able to say, ‘Hey, this is a healthy landscape and this is an unhealthy landscape.’ ”

Indeed, though soundscape ecology has hardly begun, natural soundscapes already face a crisis. Humans have irrevocably altered the acoustics of the entire globe — and our racket continues to spread. Missing or altered voices in a soundscape tend to indicate broader environmental problems. For instance, at least one invasive species, the red-billed leiothrix of East Asia, appears to use its clamorous chatter to drown out the native European blackbird in Northern Italy. Noise can mask mating calls, cause stress and prevent animals from hearing alarms, the stirrings of prey and other useful survival cues. And as climate change prompts a shift in creatures’ migration schedules, circadian rhythms and preferred habitats — reshuffling the where and when of their calls — soundscapes are altered, too. Soundscape ecologists hope they can save some ecosystems, but they also realize they will bear witness to many finales. “There may be some very unique soundscapes around the world that — just through normal human activities — would be lost forever,” Pijanowski says — unless he and colleagues can record them before they disappear. An even more critical task, he thinks, is alerting people to the way “soundscapes provide us with a sense of place” and an emotional bond with the natural world that is unraveling. As children, our grandparents could hope to swim in a lake or lie in a meadow for whole afternoons without hearing a motorboat, car or plane; today the engineless hour is all but extinct, and we’ve grown accustomed to constant, mild auditory intrusions. “Humans are becoming an increasingly more urban species, and so we’re surrounding ourselves with concrete and buildings” and “the low hum of the urban landscape,” Pijanowski says. “We’re kind of severing the acoustic link that humans have with nature.”

In Denali, silence and solitude define the winter. Fall, Betchkal says, is the departure of the sandhill cranes — an urgent, lonely trilling of flocks taking flight. Spring returns with wood frogs, the park’s only amphibian. “They’re a riotous little chorus of fellows,” Betchkal told me the day before our expedition, as I watched him assemble and test, in an empty library across from his office building, the station he planned to deploy. Outfitted in a flannel shirt and jeans, he could have been a woodsman readying his traps if not for the headphones he wore. “It’s like a really organic, biological sounding rasping, but it’s really nice, like krrrup, krrrup,” he continued, pausing amid a tangle of wire to roll his R’s. In high school, Betchkal’s band teacher told him that before he could play a note on his trumpet, in order to appreciate how the instrument produced the syllable, he needed to articulate the sound himself. Betchkal thinks the same is true of wildlife sounds: “To understand what they’re all about, you have to make them,” he said. “You’ve got to. People think it’s goofy, but it isn’t. It’s studying.”

Sounds are remarkably difficult to describe without onomatopoeia. Defining the resource he wants to protect — in words and numbers, to scientists and policy makers — is a fundamental challenge for Betchkal and other soundscape researchers. Betchkal, though, is well suited to his role. As a boy, he went camping in Wisconsin’s Devil’s Lake State Park with his father, an amateur ornithologist who taught him the pleasures of lying in a sleeping bag listening to birdcalls. At the University of Wisconsin, Madison, he majored in biochemistry and botany while running soundboards for indie bands at the King Club downtown. For Betchkal, whose office bookshelf holds titles as various as “An Introduction to the Psychology of Hearing,” “Statistical Treatment of Experimental Data” and “Glacier Travel and Crevasse Rescue,” perhaps the greatest appeal of soundscape ecology is the way it intersects other fields of study. “It’s almost like going back to old-school naturalism,” Betchkal said, “where you paid attention to anything and everything that was fascinating. That’s totally what I’m into — interdisciplinary science.”

Surprisingly, soundscape ecology, with its focus on the natural, got its start in the streets. An M.I.T. city planner first applied the word “soundscape” to habitat analysis in 1969 for a study he did on the “informativeness” and “delightfulness” of various sonic environments around Boston. Pushing volunteers about in wheelchairs, first blindfolded, then ear-muffled, then without sensory checks, he discovered that the sounds of seaports and civic centers were just as important as their appearance in influencing how much people enjoyed being there. This was a novel notion, even though objections to undesirable sounds date back to the invention of neighbors. In his influential 1977 work, “The Tuning of the World,” the Canadian composer R. Murray Schafer charts man’s relationship with noise. As long ago as 3000 B.C., he notes, the Epic of Gilgamesh discussed “the uproar of mankind,” which aggravated the god Enlil. “Sleep is no longer possible,” he complains to the other gods. In the second century A.D., wagon traffic “sufficient to wake the dead” ruined the Roman poet Juvenal’s ability to rest between Satires. Many English towns were sequestering their blacksmiths by the 13th century, and Bern, Switzerland, passed its first law “against singing and shouting in streets or houses on festival days” in 1628. Over the next 300 years, it also legislated against “barking dogs,” “singing at Christmas and New Year’s parties,” “carpet-beating” and “noisy children.” In 1972, the U.S. Environmental Protection Agency declared noise a pollutant.

Only recently, however, have governments from Japan to the European Union begun to recognize natural sounds as a resource requiring protection. When Woodrow Wilson created the National Park Service in 1916, it was to “conserve the scenery”; not until 2000 did a Park Service director issue systemwide instructions for addressing “soundscape preservation.” In 1986, a midair plane crash above the Grand Canyon National Park — where sightseeing tours had operated virtually unchecked for almost 70 years — prompted Congress to pass the National Parks Overflights Act, requiring the Park Service to work with the Federal Aviation Administration in remedying the “significant adverse effect on the natural quiet” that aircraft there appeared to be having. The act also called for studying the impacts of overflight noise on other parks.

Initial research returned alarming results. In Yosemite, planes were heard 30 to 60 percent of the day. In the Haleakala volcano crater in Maui, 8 to 10 helicopters passed overhead per hour. What’s more, other experiments showed, much as the M.I.T. study did, that noise affected the way visitors saw landscapes: when volunteers viewed photos of natural vistas while listening to helicopters on tape, they rated the scenes less picturesque than they did under quieter conditions. By 2000, the National Park Service had staffed a division to gather data on park soundscapes nationwide and create, with the F.A.A., air-tour management plans at 100-plus locations. More than a decade since — partly because of disagreements between aviation and conservation interests — no such plan is in place, though many parks have begun looking for ways to trim other noise, turning off idling shuttle buses, curbing car traffic and investing in less uproarious maintenance tools. Grand Canyon managers, after nearly 25 years of laboring, last year proposed amendments to the timing and routes of sightseeing flights that would make the park somewhat more serene.

When Denali fielded its first sound station in April 2001, far earlier than nearly every other park in the country, the primary concern was determining the level of annoyance caused by planes and snowmobiles. But scientists were about to realize the damage society’s widening sonic footprint could do to natural ecosystems. In 2003, a Dutch team studying a common songbird, the great tit, reported in Nature that males of the species shifted their calls to a higher frequency in cities, where low-frequency human noise masked their normal song range. Further proof that urban sounds cause wild creatures to adjust their vocal styles quickly followed. Nightingales sing louder in louder environments. Robins — usually diurnal singers — switch to nighttime in areas that are chaotic by day. Subjected to constant mechanical whirring, certain primates, bats, whales, squirrels and frogs all change their cries. Many other animals, it seems, lack the physical equipment to adapt, and perish or move away. Not only are individuals editing their tunes in real time — as the great tits did — but natural selection is also rewarding louder, higher-frequency singers, redirecting the course of evolution.

Species can fight for airtime in a limited bandwidth by changing their volume or frequency, or by rescheduling the timing of their calls. But there’s no way animals can alter their ability to listen — for their very survival — if human noise conceals, for example, the twig-snap of a prowler or the skittering of prey. In the United States, where more than 80 percent of land is within two-thirds of a mile of a road, the listening area available to most creatures is rapidly shrinking. Beyond hunting and hiding, even invertebrates use the gabbing of unwitting cohabitants for navigation. Sightless, earless and adrift in the open ocean, coral larvae seek to settle on tropical reefs by swimming toward the throbs of muttering fish and snapping-shrimp claws. Eurasian reed warblers en route to southern Africa at night flutter blind over pine forests, sand dunes and the Baltic Sea until, hundreds of feet below, the cheeping of other warblers signals the presence of sustaining wetlands. If those aural cues disappear, the species that heed them may be floating and flying without a compass.

Explosive human sounds can have catastrophic impacts, especially underwater, where they travel faster and farther than they do in the air. Porpoises and whales have beached themselves fleeing the high-pitched shrieks of U.S. Navy sonar, researchers believe; they also blame the low-frequency booms ships use to search for oil and gas for fatally ripping through the organs that cephalopods like squid use to detect vibrations. Fewer studies have examined the health impacts of more mundane, chronic noises on terrestrial species, but proof is emerging that the droning of freeway traffic and the 24/7 rumbling of natural-gas-pipeline compressors directly harm the ability of birds nesting nearby to reproduce. Jesse Barber, a biologist at Boise State University who is the co-author of two recent papers about the impacts of noise on land-dwelling animals, writes that “it is clear that the acoustical environment is not a collection of private conversations between signaler and receiver” but a network of broadcasts reaching both intended and invisible listeners. Like pulling Jenga blocks from a teetering tower, removing sounds from soundscapes — or adding them — he warns, “could have volatile and unpredictable consequences.”

In the library across from his office building, Betchkal crawled among cables, politely probing each instrument with a voltmeter like a plaid-clad doctor with a stethoscope. The park has been able to take continuous recordings since only 2010 (previous setups recorded five seconds of audio every five minutes), and the scale and quality of its efforts in the wilderness are among the most advanced in the world. Though each station costs about $12,000, glitches are common: the instruments still aren’t designed to work together, or in outdoor conditions. Wind has toppled them; rivers have flooded them; grizzlies have mangled microphones. Betchkal fiddled much of the morning before he felt satisfied that the station was running properly and began to break it down, packing it methodically away and carrying it to his office. Pulling a checklist from his desk, he started filling bags with tools he might need the next day: blue crystal desiccants in vials to keep the air in the equipment boxes dry, wire strippers, extra cable. He’d never set up a station in November and December before. Part of the point was to add to baseline measurements of the park’s overall soundscape — another was to measure just how quiet the winter could be and preserve that sensation for posterity. “I suspect that it gets down below the threshold of human hearing,” Betchkal said, adding duck seal, Gaffer’s tape and an Exacto knife to the bag. “Below zero decibels.” If he did manage to capture a stretch of quiet that extreme, I wondered, what would it reveal?

“Openness!” Betchkal exclaimed. He paused to chase his thought. “Quiet is related to openness in the sense that the quieter it gets — as your listening area increases — your ability to hear reflections from farther away increases. The implication of that is that you get an immense sense of openness, of the landscape reflecting back to you, right? You can go out there, and you stand on a mountaintop, and it’s so quiet that you get this sense of space that’s unbelievable. The reflections are coming to you from afar. All of a sudden your perception is being affected by a larger area. Which is different from when you’re in your car. Why, when you’re in your car, do you feel like you are your car? It’s ’cause the car envelops you, it wraps you up in that sound of itself. Sound has everything to do with place. What is beautiful about this place? What is interesting or iconic about Alaska? Anyway,” he bowed apologetically at the waist, “that’s a lot of words. What I’m really measuring is the potential — the potential to hear natural sounds. If you’re choosing to listen, what are you actually going to hear?”

Around noon, nearing Hines Creek, we halted on the trail. The afternoon was windless. We were warm from walking but rapidly started to freeze; feeling left our fingers and noses first. Betchkal pointed off the path to the south, across a field of tangled willows, to a steep, snowy ridge, atop which he wanted to put the station. We shook up chemical hand warmers so they’d be hot when we reached the summit and charged into the thicket after Jeff Duckett, the ranger. Branches crashed against jackets and backpacks. We tripped on roots and fell. The sled proved too awkward to carry, and after retrieving two solar panels and a box of gear, Duckett and Betchkal abandoned it. At the foot of the hill, we began switchbacking upward through knee-high snow drifts. A Piper Cub skirted low over our heads, the roar of the engine momentarily blotting out the sounds of our breathing. Reaching the top, we dumped the audio equipment and threw on extra jackets. Betchkal got to work quickly, arranging tripods and running Arctic cable designed not to snap in subzero weather. Below, miles of black spruce spanned the valley separating us from Mount Healy.

Ostensibly, Betchkal’s stations capture exactly what we would hear if we could stand invisibly in the wilderness for a month. The recordings can reveal the sonic relationships that play out in our absence — and help us to modify our acoustic footprint. But our understanding of sound will always be limited by our perception of it. We will never experience the ultrasonic cries of insects, lizards or bats without distorting them. Decibels are self-deception. Bell Telephone Laboratories conjured them to measure loudness in the 1920s (the “bel” honors the company’s eponymous founder), but they represent volume as our ears register it, and the louder a sound is, the less of it we actually take in.

Hearing arguably fixes us in time, space and our own bodies more than the other senses do. Our vitals are audible: sighing lungs, a pounding pulse, a burbling gut. John Cage, the composer, once tried to observe complete silence in a soundproof room, but he still heard distinct noises — made, it turned out, by the nerves and blood of his own body. “Until I die,” he concluded, “there will be sounds.” We can shut our eyes at will, but not our ears, and what we hear is penetrating and physical — a wave entering our head. Even the deaf perceive internal jangling and external sonic feedback. The tactile nature of sound — the way it bounces back to us from other surfaces — helps us locate ourselves in relation to our surroundings and to know what’s behind us or around a corner. Fast asleep, our heartbeats quicken at a loud noise. In the womb, before we are aware, we hear the cacophonous exertions of our mother’s body. Returning from a field trip to the Potomac River refuge in Northern Virginia last year, a fourth grader wrote — in a passage that eventually reached a biologist in Soldotna, Alaska — that “the best thing about this place is that it has such nice noises you don’t feel alone when you are alone.”

In a series of gloveless maneuvers, Betchkal screwed together a weather station that would measure temperature, wind speed and direction, plus humidity. He arranged the solar panels, connected them to a box of batteries and sent power to the instruments: a sound level meter that continuously logs decibels at specific frequencies and an audio recorder. The meter powered on. The recorder did not. “Come on, you little stinker!” Betchkal said. Thinking it might be frozen, he slipped the device under his long johns, yelping when it met his thigh.

The next day, Betchkal showed me on his computer how he uses a program called Splat to analyze the data he gets. “Like in farming,” he said, “you’ve made the harvest, and now we’re going to take that raw thing and cook it or refine it down into something that can be used for different products.” Splat takes the data from the sound-level meter and arranges it on a spectrogram: a blue field of time on which sounds appear as orange shapes, their height representing their frequency, their brightness showing loudness, their length duration. Scrolling through the month, Betchkal labels many sounds by sight. Once he’s done tagging, the data can take on meaning, morphing into a graph of the circadian rhythms of wood-frog calls, say, or a park map of helicopter audibility.

Betchkal also listens to a subsample of the recordings. “I love this clip,” he said, pressing play on his computer. We heard a snuffling at the microphone and, nearby, the bellowing of babies that were actually bear cubs. “Part of my job is to go around and document these rare sounds,” he said, “to better understand the resource that needs to be protected — are there really important sounds out there that are disappearing?” He clicked again, and the tinny gurgle of an ice cave filled the speakers. “There’s thousands of little bubbles,” he said in narration. “I imagine like a big cave, and each room of the cave probably has different ways of reflecting sound. We can share sounds with people who might not be able to walk up to that ice cave and go hang around inside of it. Maybe even better, it excites them enough that they’re like, All right, let’s go on a hike! We’re going to check out an ice cave! Or whatever.”

Listening to Betchkal’s recordings of people passing his stations in the course of their travels can be unexpectedly elegiac. Tents flap, camp stoves hiss, people laugh, sniffle, adjust their packs. Once, trolling through audio from a mountain site, Betchkal happened upon a two-man concert, climbers duetting on guitar and mandolin. Another time, he discovered a rocky summer avalanche, an escalating rumble so deep it shook his desk.

On the ridge top, Betchkal’s body heat and hand warmers failed to revive the recorder. After more than an hour of troubleshooting, a spare pair of AA batteries succeeded in getting the device to work — but that meant, unlike the rest of the solar-powered equipment, it would run for only about a week. “It’s disappointing to me — really disappointing,” Betchkal said. “But that can happen — that does happen. If things go wrong, I’ll come back, and I can fix them.” He wrestled the instrument case closed and sealed it against the snow and wind of the coming month. The weather had begun to seep through our Polartec defenses, numbing our joints; water and pen ink were solids; cheese sticks gonged against canteens. “One last thing we need to do,” Betchkal said, shaking off defeat. “I know everyone’s probably cold and tired, but we’re going to listen. Get comfortable, be sure you’re not needing to fidget with stuff — ” A zipper zipped. Two magpies chirped. I lifted my arms from my sides to shush my sleeves and closed my eyes.

Night fell as we retraced our steps along the trail. The sky turned from lavender to indigo while the snow on the ground and the mountains glowed even when the last of the sun was gone. We headed for Jupiter, hanging low above the trees, and as we walked, I pictured the station back on the ridge, wrapped in the same darkness. When Betchkal harvests the audio, he will find us repacking our packs, exclaiming over our frozen apparatuses and sliding down the hillside into the willow field below. He will also, for three minutes, witness us still our movements and attune our ears to one of the quietest places left on Earth. In that window, I could hear the vastness of the valley — no sound marks materialized, like buoys bobbing on an empty ocean, to segment the sense of infinity. The landscape enveloped me, as Betchkal said it would, and I felt I was the landscape, where mountains and glaciers rose and shifted eons before the first heartbeats came to life.

“Standing in that place right there,” Betchkal told me later, “I had a complete sense that I was standing in that place right there and not drawn or distracted from it at all.” I felt located, too, but I could also imagine that if I hollered, my voice might not ever bounce back — that where I was, precisely, was a ridge top in a wide wilderness on a spinning rock in outer space. Ahead of me on the trail, as we neared our destination, Betchkal’s figure blurred in the darkness. The trees around us disappeared. There were, at last, only our footsteps. Then, barely audible, an inevitable airborne murmur — a sign from the civilized world.

************************************************************************************

The wolverine resembles a small bear. The animals frequent remote boreal forests, taiga, and tundra in the northern latitudes.

The wolverine, Gulo gulo (Gulo is Latin for “glutton”), also referred to as glutton, is the largest land-dwelling species of the family Mustelidae (weasels). It is a stocky and muscular carnivore, closely resembling a small bear. The species has a reputation for ferocity and strength out of proportion to its size, with the documented ability to kill prey many times its size. With short legs, broad and rounded head, and small eyes with short rounded ears, it resembles a bear more than other mustelids.Though its legs are short, its large five-toed paws and plantigrade posture facilitate movement through deep snow.

Wolverines are solitary, requiring much room to roam. Individual wolverines may travel 15 miles (24 kilometers) in a day in search of food. Because of their habitat requirements, the animals are found primarily in remote reaches of the Northern boreal forests and subarctic and alpine tundra of the Northern hemisphere, with the greatest numbers in northern Canada, the U.S. state of Alaska, the Nordic countries of Europe, and throughout western Russia and Siberia. Their populations have experienced a steady decline since the 19th century in the face of trapping, range reduction and habitat fragmentation, such that they are essentially absent in the southern end of their European range. It is, however, estimated that large populations remain in North America and northern Asia.

Recently compiled genetic evidence suggests that most of North America’s wolverines are descended from a single source, likely originating from Beringia (the area of the Ice Age land bridge between present day Alaska and Siberia) during the last glaciation and rapidly expanding thereafter, though there is considerable uncertainty to this conclusion due to the difficulty of collecting samples in the extremely depleted southern extent of the range.

The adult wolverine is about the size of a medium dog, with a length usually ranging from 26–42 in., a tail of 6.7–10 in., and a weight of 20–55 lbs, though exceptionally large males can weigh up to 71 lbs The males are as much as 30% larger than the females and can be twice the female’s weight. Shoulder height is reported from 12 to 18 in. It is the largest of terrestrial mustelids; only the marine-dwelling sea otter and giant otter of the Amazon basin are larger.

Wolverines have thick, dark, oily, fur which is highly hydrophobic, making it resistant to frost. This has led to its traditional popularity among hunters and trappers as a lining in jackets and parkas in Arctic conditions. A light silvery facial mask is distinct in some individuals, and a pale buff stripe runs laterally from the shoulders along the side and crossing the rump just above a 9.8–14 in. bushy tail. Some individuals display prominent white hair patches on the throat or chest.

Like many other mustelids, it has potent anal scent glands used for marking territory and sexual signaling. The pungent odor has given rise to the nicknames “skunk bear” and “nasty cat.” Wolverines, like other mustelids, possess a special upper molar in the back of the mouth that is rotated 90 degrees, towards the inside of the mouth. This special characteristic allows wolverines to tear off meat from prey or carrion that has been frozen solid.

Wolverines eat a bit of vegetarian fare, like plants and berries, in the summer season, but this does not make up a major part of their diet. —they are tenacious predators with a taste for meat. Prey mainly consists of small to large-sized mammals and the wolverine has been recorded killing prey such as adult deer that are many times larger than itself. Prey species include porcupine, squirrel, beaver, marmot, rabbit, vole, mice, shrew, lemming, caribou, roe deer, white-tailed deer, mule deer, sheep, moose, and elk. Smaller predators are occasionally preyed on, including martens, mink, foxes, canada lynx, weasels, Eurasian lynx, and coyote and wolf pups. Wolverines often pursue live prey that is relatively easy to obtain, including animals caught in traps, newborn mammals and deer (including adult moose and elk) when they’re weakened by winter or immobilized by heavy snow. The diet is sometimes supplemented by bird’s eggs, birds (especially geese), roots, seeds, insect larvae and berries. A majority of the wolverine’s sustenance is derived from carrion, which they depend on almost exclusively in winter and early spring. Wolverines may find carrion themselves, feed on it after the predator is done feeding (especially wolf packs) or simply take it from another predator. Whether eating live prey or carrion, the wolverine’s feeding style appears voracious, leading to the nickname of “glutton” (also the basis of the scientific name). However, this feeding style is believed to be an adaptation to food that is scarcely encountered, especially in the winter.[14]Wolverines easily dispatch smaller prey, such as rabbits and rodents, but may even attack animals many times their size, such as caribou, if the prey appears to be weak or injured. These opportunistic eaters also feed on carrion—the corpses of larger mammals, such as elk, deer, and caribou. Such finds sustain them in winter when other prey may be thinner on the ground, though they have also been known to dig into burrows and eat hibernating mammals.

Males scent-mark their territories, but they share them with several females and are believed to be polygamous. Females den in the snow or under similar cover to give birth to two or three young each late winter or early spring. Kits sometimes live with their mother until they reach their own reproductive age—about two years old.

Wolverines inhabiting the Old World (specifically, Fennoscandia) are more active hunters than their North American cousins. This may be because competing predator populations in Eurasia are not as dense, making it more practical for the wolverine to hunt for itself than to wait for another animal to make a kill and then try to snatch it. They often feed on carrion left by wolves, so changes in the population of wolves may affect the population of wolverines.

The world’s total wolverine population is unknown. The animal exhibits a low population density and requires a very large home range. The range of a male wolverine can be more than 240 sq mi., encompassing the ranges of several females which have smaller home ranges of roughly 50–100 sq mi. Adult wolverines try for the most part to keep non-overlapping ranges with adults of the same sex. Radio tracking suggests an animal can range hundreds of miles in a few months.

Female wolverines burrow into snow in February to create a den, which is used until weaning in mid-May. Areas inhabited non-seasonally by wolverines are thus restricted to zones with late-spring snowmelts. This fact has led to concern that global warming will shrink the ranges of wolverine populations.

The PBS series Nature released a documentary, “Wolverine: Chasing the Phantom” as episode #166 on 14 November 2010. This 53-minute documentary focuses on the efforts of a number of naturalists in the United States to track wolverines, collect genetic data, and learn more about wolverine populations, individual behavior and social behavior. It also tracks the raising of two male wolverines in captivity at an Alaska nature reserve from birth to maturity, and profiles the naturalists making these efforts.

For more information concerning the wolverine and conservation efforts visit the Wolverine Foundation